Biosynthesis of 9-cis-retinoic acid in vivo. The roles of different retinol dehydrogenases and a structure-activity analysis of microsomal retinol dehydrogenases.
نویسندگان
چکیده
Retinoic acid is generated by a two-step mechanism. First, retinol is converted into retinal by a retinol dehydrogenase, and, subsequently, retinoic acid is formed by a retinal dehydrogenase. In vitro, several enzymes are suggested to act in this metabolic pathway. However, little is known regarding their capacity to contribute to retinoic acid biosynthesis in vivo. We have developed a versatile cell reporter system to analyze the role of several of these enzymes in 9-cis-retinoic acid biosynthesis in vivo. Using a Gal4-retinoid X receptor fusion protein-based luciferase reporter assay, the formation of 9-cis-retinoic acid from 9-cis-retinol was measured in cells transfected with expression plasmids encoding different combinations of retinol and retinal dehydrogenases. The results suggested that efficient formation of 9-cis-retinoic acid required co-expression of retinol and retinal dehydrogenases. Interestingly, the cytosolic alcohol dehydrogenase 4 failed to efficiently catalyze 9-cis-retinol oxidation. A structure-activity analysis showed that mutants of two retinol dehydrogenases, devoid of the carboxyl-terminal cytoplasmic tails, displayed greatly reduced enzymatic activities in vivo, but were active in vitro. The cytoplasmic tails mediate efficient endoplasmic reticulum localization of the enzymes, suggesting that the unique milieu in the endoplasmic reticulum compartment is necessary for in vivo activity of microsomal retinol dehydrogenases.
منابع مشابه
Understanding retinol metabolism: structure and function of retinol dehydrogenases.
Retinoids (vitamin A derivatives) have dual functions in physiology. 11-cisRetinal serves as the universal chromophore of the visual pigments in the eye, and the hormonal retinoids, mainly all-transand 9-cis-retinoic acid (RA),2 regulate the expression of target genes via activation of two classes of nuclear retinoid receptors, the retinoic acid receptors (RARs), and the retinoid X receptors (R...
متن کاملA novel isoenzyme of aldehyde dehydrogenase specifically involved in the biosynthesis of 9-cis and all-trans retinoic acid.
The pleiotropic effects of retinoids are mediated by two families of nuclear receptors: RAR (retinoic acid receptors) and RXR (retinoid X receptors). 9-cis-Retinoic acid is a specific ligand for RXR receptors, whereas either 9-cis- or all-trans-retinoic acid activates the RAR receptor family. The existence of RXRs suggests a new role for isomerization in the biology of retinoic acid. We report ...
متن کاملFamilies of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid.
Vitamin A (retinol) and provitamin A (beta-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate ge...
متن کاملComparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids.
Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinald...
متن کاملCharacterization of a microsomal retinol dehydrogenase gene from amphioxus: retinoid metabolism before vertebrates.
Amphioxus, a member of the subphylum Cephalochordata, is thought to be the closest living relative to vertebrates. Although these animals have a vertebrate-like response to retinoic acid, the pathway of retinoid metabolism remains unknown. Two different enzyme systems - the short chain dehydrogenase/reductases and the cytosolic medium-chain alcohol dehydrogenases (ADHs) - have been postulated i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 22 شماره
صفحات -
تاریخ انتشار 2001